對于新手來說,在電源電路設計中,EMI/EMC相關問題的出現恐怕是最為常見的。小編特此福利大放送,分享一些開關電源EMI的設計經驗,希望看完本文后能幫助朋友們順利解決其相關問題。
開關電源的EMI源
開關電源的EMI干擾源集中體現在功率開關管、整流二極管、高頻變壓器等,外部環境對開關電源的干擾主要來自電網的抖動、雷擊、外界輻射等。
(1)功率開關管
功率開關管工作在On-Off快速循環轉換的狀態,dv/dt和di/dt都在急劇變換,因此,功率開關管既是電場耦合的主要干擾源,也是磁場耦合的主要干擾源。
(2)高頻變壓器
高頻變壓器的EMI來源集中體現在漏感對應的di/dt快速循環變換,因此高頻變壓器是磁場耦合的重要干擾源。
(3)整流二極管
整流二極管的EMI來源集中體現在反向恢復特性上,反向恢復電流的斷續點會在電感(引線電感、雜散電感等)產生高 dv/dt,從而導致強電磁干擾。
(4)PCB
準確的說,PCB是上述干擾源的耦合通道,PCB的優劣直接對應著對上述EMI源抑制的好壞。
開關電源EMI傳輸通道分類
傳導干擾的傳輸通道
(1)容性耦合
(2)感性耦合
(3)電阻耦合:公共電源內阻產生的電阻傳導耦合;公共地線阻抗產生的 電阻傳導耦合;公共線路阻抗產生的電阻傳導耦合;
輻射干擾的傳輸通道
(1)在開關電源中,能構成輻射干擾源的元器件和導線均可以被假設為天線,從而利用電偶極子和磁偶極子理論進行分析;二極管、電容、功率開關管可以假設為電偶極子,電感線圈可以假設為磁偶極子;
(2)沒有屏蔽體時,電偶極子、磁偶極子,產生的電磁波傳輸通道為空氣(可以假設為自由空間);
(3)有屏蔽體時,考慮屏蔽體的縫隙和孔洞,按照泄漏場的數學模型進行分析處理。